
Kinesthetics eXtreme: An External Infrastructure for
Monitoring Distributed Legacy Systems

Gail Kaiser1, Janak Parekh1, Philip Gross1 and Giuseppe Valetto1,2

1Columbia University Programming Systems Lab, Department of Computer Science
2Telecom Italia Lab

{ kaiser, janak, phil, valetto } @ cs.columbia.edu

Abstract

Autonomic computing – self-configuring, self-healing,
self-optimizing applications, systems and networks – is
widely believed to be a promising solution to ever-
increasing system complexity and the spiraling costs of
human system management as systems scale to global
proportions. Most results to date, however, suggest ways
to architect new software constructed from the ground up
as autonomic systems, whereas in the real world
organizations continue to use stovepipe legacy systems
and/or build “systems of systems” that draw from a
gamut of new and legacy components involving disparate
technologies from numerous vendors. Our goal is to
retrofit autonomic computing onto such systems,
externally, without any need to understand or modify the
code, and in many cases even when it is impossible to
recompile. We present a meta-architecture implemented
as active middleware infrastructure to explicitly add
autonomic services via an attached feedback loop that
provides continual monitoring and, as needed,
reconfiguration and/or repair. Our lightweight design
and separation of concerns enables easy adoption of
individual components, as well as the full infrastructure,
for use with a large variety of legacy, new systems, and
systems of systems. We summarize several experiments
spanning multiple domains.

1. Introduction

The increasing complexity of computer systems,
networks and applications has led to a tremendous
interest in what some have termed autonomic computing
[1]: in particular, the notion of self-managing software is
an attractive approach to reducing the time and effort
costs of maintaining and operating software systems.
Such technologies are now being promoted in the COTS
market; for example, Microsoft’s XP product line has
debug and repair semantics built-in to try and reduce
downtime [2]. However, such approaches often ignore
legacy software, assuming the user will be willing and
able to migrate. A New York Times article [3] describes
the “trailing edge” industry, where migration usually is

not an option. The article is primarily concerned with
electronic components and other hardware used by the
military, but the author notes similar factors are at play in
civilian telecommunications equipment, medical devices,
etc. – many of which also run old software. Even when
not running on archaic hardware, legacy software may be
implemented in “unsafe” languages like C, or written in
languages no longer in common use, making the need for
autonomic repair even greater [4].

Various facilities have been developed to automate
problem detection and/or repair. For example, some new
operating systems and applications include engines to
automate the collection of crash data [5]; other tools help
detect anomalous behavior by monitoring system and
application logs [6]; and a few tools provide
administrative control over application behavior [7].
However, these tools are largely application-neutral,
leaving understanding of what the system is supposed to
be doing, how and why, to the human administrator.
Thus only the simplest general-purpose analyses and
repairs can be automated.

In an attempt to do better, we have developed a
generic framework for collecting and interpreting
application-specific behavioral data at runtime, tailored to
the application (or more generally to the domain) by
introduction of models that describe both expected correct
behaviors as well as anticipated error situations. What we
call probes are attached to the target system to collect
data, while gauges aggregate, filter and interpret the
probed data. This monitoring framework can be used with
or without a feedback loop that automatically performs
repairs and reconfigurations; we present our automated
repair framework separately in [8].

Our implementation of this approach is called
Kinesthetics eXtreme, or KX. KX runs as a lightweight,
decentralized, easily integrable collection of active
middleware components, tied together via a publish-
subscribe (content-based messaging) event system. We
show how KX can be used to monitor a variety of target
applications employing application-level semantics.
XML is used as a native data format, providing rich
expressiveness.

2. Background

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2005 2. REPORT TYPE

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Kinessthetics eXtreme: An External Infrastructure for Monitoring
Distributed Legacy Systems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency,3701 North Fairfax
Drive,Arlington,VA,22203-1714

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT
Autonomic computing - self-configuring, self-healing, self-optimizing applications, systems and networks -
is widely believed to be a promising solution to ever-increasing system complexity and the spiraling costs of
human system management as systems scale to global proportions. Most results to date, however, suggest
ways to architect new software constructed from the ground up as autonomic systems, whereas in the real
world organizations continue to use stovepipe legacy systems and/or build "systems of systems" that draw
from a gamut of new and legacy components involving disparate technologies from numerous vendors.
Our goal is to retrofit autonomic computing onto such systems, externally, without any need to understand
or modify the code, and in many cases even when it is impossible to recompile. We present a
meta-architecture implemented as active middleware infrastructure to explicitly add autonomic services
via an attached feedback loop that provides continual monitoring and, as needed, reconfiguration and/or
repair. Our lightweight design and separation of concerns enables easy adoption of individual components,
as well as the full infrastructure, for use with a large variety of legacy, new systems, and systems of
systems. We summarize several experiments spanning multiple domains.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

9

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

The monitoring model, as inspired by the DARPA

DASADA program [9], is explicitly designed to be
lightweight. There are several first-class entities:

• The target system refers to the application, set of

applications, or application components that are
being monitored;

• Probes are generally small, constrained,
noninvasive pieces of code which get installed in
or around the target application system – they may
inject source code, modify bytecodes or binaries,
replace DLLs or other dynamic libraries, inspect
network traffic, and/or perform other related tasks
to collect this information;

• Gauges are responsible for interpreting data from
these probes, and generate semantic events about
the behavior of the application - often operating in
an effective hierarchy where higher-level gauges
interpret aggregate events from lower-level
gauges;

• Controllers receive analysis results from the
gauges, and decide if and when to coordinate one
or more effectors to attempt a repair.

• Effectors apply reconfiguration or repair, usually
tuning or replacing an individual component, or
spinning up a new component, as per the task(s)
defined by relevant controllers.

Figure 1. Overview of the monitoring infrastructure.

Figure 1 shows the data (thin solid lines) and control
flow (thick dashed lines) of the monitoring infrastructure
on top of a target system. Note that this is a conceptual
diagram; the buses may be unified, separate, or there may
be no bus per se, instead, point-to-point connections
could be used (although the intent is efficient multicast
based on content subscriptions). We take advantage of
this to loosely couple the probes, gauges and controllers
in our architecture by making all of them event-based,
i.e., every component asynchronously messages each

other via a standardized event middleware. We currently
use U. Colorado’s Siena publish-subscribe system [10],
which supports events represented as collections of
attribute-value pairs. We are also actively developing our
own event system, Multiply Extensible Event Transport
(MEET), to natively support richer event formats, such as
XML, as well as performance optimizations. By
leveraging such event middleware, KX components can
be easily rearranged, or multiple instances of KX
components can be used, to address the needs and
scalability requirements of the target system.

3. Implementation

Our KX implementation is composed of probe, gauge,
controller and effector components in order to accomplish
system monitoring and reconfiguration.

Legacy System

Legacy System

Legacy System

OracleDB Event
Distiller

Metaparser
tag

processor

Siena worklet worklet

workflakes
Event

Packager

DB

Probes

Figure 2. KX System Overview. Decision

Controllers

A specific probe technology is not formally part of the

KX infrastructure, as the best selection among potential
technologies is often peculiar to the implementation
details of the target system and can vary widely. We have
employed a number of probe solutions developed by
others, which we discuss in a later section (see section 4,
Experiments).

Interpretation

Gauges

Collection

Probes

The Event Packager provides event translation and
“flight recorder” services to standardize and log all of the
incoming event streams from the probes. The Event
Distiller performs sophisticated cross-stream temporal
event pattern analysis and correlation to monitor desirable
(and, correspondingly, undesirable) behavior. Both of
these components are discussed in detail in the next few
sections, and constitutes the main contribution of this
paper.

Legacy System(s) Configuration

Effectors

The Metaparser and Oracle are optional components
that can be utilized to perform intelligent XML-based
event vocabulary discovery and ontology translation,
based on our separate Flexible XML (FleXML) effort.
They are most useful when KX is used for target systems
and/or probe technologies that natively output XML-

formatted events. The Metaparser and Oracle are
discussed in [11].

Event
Packager

Siena bus

OBJS
ProbeMeister

MEET bus

WPI
AIDE

PSL
Probelets

Legacy
probe

Administrator/
Programmer/

Debugger

Event transformsEvent inputs

Siena input

MEET input

Socket input

Console input
(administrative)

Event store mechanism

JDBC event
store

RAM event
store

Serialized event
object store

SQL
database

Siena XML
SmartEvents

ASCII XML
SmartEvents

Simple event
rewriting

Event timestamp
synchronization

FleXML
processing

Event outputs

Siena output

MEET output

Socket output

ELVIN output

Console output
(for debugging)

Store support

ELVIN input

Finally, Workflakes and Worklets are our control and
effector technologies, respectively. Workflakes combines
a decentralized workflow engine based on the open-
source Cougaar technology [12] with Worklets, which is
our own mobile agent architecture [13]. A complete
discussion of Workflakes and corresponding control and
repair scenarios is described in detail in [8].

It is important to note that all of these are separately
usable components. Depending on the problem domain,
one or more of these components may be used. For
example, if only a few very well-defined repair scenarios
are to be performed, or if KX is only being used to do
high-level monitoring without reconfiguration or repair,
one may choose to omit the Workflakes component.
Similarly, if only one source of events is being monitored,
the Event Packager component may be redundant. In fact,
the development of Worklets preceded the rest of KX,
and was originally developed for other purposes [14], but
adapted nicely to our reconfiguration and repair
requirements. Siena will soon replaced by our own
MEET, but other event propagation technology could be
easily dropped in as elaborated below.

Figure 3. Event Packager.

The various plugins are coordinated via a user-
definable XML rulebase that dictates what should be
done to the data (transforms) and to whom the data
should be sent. Typically, a number of different input
formats are streamlined, spooled, and aggregated onto
one event stream for the other KX components.
Appendix A lists an example Event Packager rulebase.
The Event Packager also supports dynamic rulebase
addition by specially-formed events sent to it.

Freely-available downloads of all KX components, as
well as the full system, may be obtained at [15].

3.1 Event Packager

The Event Packager component is designed to support

event aggregation, transformation, and persistent
spooling. It utilizes a plug-in architecture to support a
variety of incoming event formats (inputs), including
XML, Siena, Elvin [16], SMTP, raw TCP data, Java RMI,
etc.; a variety of transformations, including the persistent
spooling and timestamping; and a variety of output
options, closely mirroring the input possibilities. New
plugins can easily be created; for example, we are
working on integrating Instant Messaging (IM) protocols
to support a richer variety of event systems.

Internally, the datapaths as defined by the rulebase are
implemented as fast pipelines, so that events introduced
into the Event Packager are routed very quickly to the
appropriate transforms and outputs. In particular,
incoming events are wrapped in a format-neutral Event
Packager event, and are tagged so the Event Packager can
route them amongst transforms and outputs with only
minimal inspection.

The Event Packager is currently about 9,000 lines of
Java code; the core engine is about 2,000 lines, while
bundled plugins (including, but not limited to, the
aforementioned) is the rest; there is also some small
amount of C glue code to handle sendmail and other
legacy integration.

3.2 Event Distiller

In many monitored systems, the key is to determine

what original failure (“root cause”) started a cascading
problem [17]. The Event Distiller is the component
responsible for detecting causality amongst the events in
significant event sequences, by performing time-based
pattern matching. Internally, it uses a collection of
nondeterministic state engines for temporal complex

event pattern matching. While this is memory-intensive,
it allows a richer representation of event sequences: logic
constructs are supported, as are loops, rule chaining, and
variable binding. We also mitigate memory usage by
supporting timeouts and automatic garbage collection.
Timestamped event reordering is also supported, so if
events arrive out-of-order within a certain window, the
Event Distiller will rearrange them appropriately so that
sequences, and causality, can still be recognized correctly.

Currently, the Event Distiller has two different
execution models: it can either exist as a Siena client or
can be embedded directly inside another KX (or target
system) component, at which point events are passed
through method calls. If XML event formatting is
involved, the Metaparser can be situated in front of the
Event Distiller to perform reduction; we are currently
developing the next version of the Event Distiller, which
will handle fast XPath matching directly.

 The Event Distiller is implemented in Java and is
currently about 7,000 lines of code; a typical rulebase is
usually a few hundred lines of XML

Event Distiller

Event bus

Event Packager Other event sources

Internal Event Distiller busGauge output

State
Manager

State data store

Currently
running

(matching)
gauges

Example
gauge
(state

machine)

a

b c

t=20 t=20

fail
state

d
t=5

e
t=10

success
state

t=12 t=inf

Gauge templates

instantiates
& controls

CMU Gauge
Infrastructure

4. Experiments

In order to validate KX’s utility as a monitoring
infrastructure, we developed several scenarios and
corresponding experiments with real, deployed complex
distributed software. We describe three scenarios in this
section: email processing, failure detection, and load
balancing.

4.1 Email processing (spam detection)

Email spam has become a persistent nuisance [19].

Often, an identical message gets sent to a huge number of
targets (e.g., all addresses from a virus-recipient’s address
book or web-spider-constructed mailing list).

In order to demonstrate KX’s flexibility beyond
conventional failure detection, reported in previous
papers, we instrumented Sendmail [20], a popular email
Message Transfer Agent (MTA), to capture messages
being received in a target network. More precisely, a
Sendmail milter [21] was installed to capture incoming
traffic to the Event Packager. Specific attributes about
each message (such as source address, subject, or
Message-ID) were captured by probes, encapsulated into
events, and sent through the Event Distiller. The Event
Distiller was fed with rules that would trigger if multiple
(3+) messages containing the same source and Message-
ID were received in a very short timespan (less than 10
seconds).

Figure 4. Event Distiller.

Event Distiller rules may be populated in one of
several ways: First, an XML rulebase (separate from the
Event Packager rulebase) is supported, where event
sequences are specified, along with timebound parameters
as well as “success” and “failure” notifications; we have
also developed a GUI to assist a KX integrator; it also
works as a systems management console for human
engineers, although our goal is to automate many repairs
within a KX feedback loop. Second, the Event Distiller
supports dynamic rule generation – messages can be sent
to the Event Distiller with XML snippets specifying a rule
or a segment of a rule (e.g., to construct new rules on the
fly or modify existing rules). Third, as with the Event
Packager, other sources can be easily integrated: We
have integrated support for ACME [18] constraints – the
Event Distiller can act as a “reporting gauge” onto
CMU’s ACME Gauge Bus, thereby providing feedback
to the architectural description language and
corresponding architecturally-oriented repair tools. We
are also investigating learning techniques to build rules in
a more autonomic fashion.

<state name="a" timebound="-1" children="b">
 <attribute name="from" value="*1"/>
 <attribute name="subject" value="*2"/>
</state>
<state name="b" timebound="100" count="1" children=""
 actions="A,B" fail_actions="F" absorb="true">
 <attribute name="from" value="*1"/>
 <attribute name="subject" value="*2"/>
</state>

Figure 5. Sample pattern to detect repeated emails.

A number of different constructs are used here to
allow for flexibility. The “timebound” construct was
previously alluded to; note that an initial event in a
pattern implicitly does not have a timebound. “Children”
designates successors from a given state, and “Actions”
and “Fail_Actions” denote success and failure,
respectively, and refer to notification specified elsewhere
in the rulebase. (A full example, including notifications,
is in the appendix; comprehensive documentation on the
rule language can be found at [22].)

Additionally, the “*1” term in the above rules
designate a wildcard binding, i.e., the Event Distiller
substitutes all instances of “*1” by the first source that it
sees for this instance of the rule. By doing so, the Event
Distiller is able to leverage one rule to match a large
number of different sources and subjects.

Once detection has occurred, resolution is
accomplished by dispatching a Worklet that reconfigures
the Sendmail MTA in the target network to block all
further messages from that source address by rewriting
the configuration file and sending a hangup signal
(SIGHUP) to Sendmail to reload its configuration. In our
experiments, the solution worked for simple spam – i.e.,
one message sent by a spammer to a broad number of
people in the same organization would verifiably get
caught and future communication from that spammer
would be blocked.

While this technique has been superceded by better
spam-specific technologies, such as SpamAssassin [23],
which uses dynamic rules and Bayesian learning to
distinguish more “stealthy” spam, this example
demonstrates the broad utility of our Event Distiller’s
timebound-based pattern matching, even with email-
specific semantics. In essence, we were able to add
(limited) autonomic behavior to Sendmail.

4.2 Failure detection

We also integrated the KX infrastructure with a

complex GIS mapping system developed at ISI and used
experimentally at PACOM, known as GeoWorlds [24].
GeoWorlds is built out of a distributed set of services
glued together by Jini [25]. While the system generally
works well, there are very complex services that
occasionally stop running correctly, and there’s normally
no recourse except to wait for the request to time out and
to manually restart the appropriate backend component.

Using WPI’s AIDE [26] probe technology, we were
able to automatically instrument the GeoWorlds Java
source code with probes that would monitor the start and
end of method calls that were relevant to this service.
The Event Distiller then incorporated rules to monitor a
variety of method calls, making sure that a “termination”
call matched up with each “initiation” call within an
appropriate timebound (ranging from seconds to a

minute). AIDE reported method calls in an XML format;
these calls were then be translated to a simple attribute-
value set via the Metaparser and fed into the Event
Distiller. The following XML is an example of the
incoming event patterns used to perform such failure
detection.

<state name="Start" timebound="-1" children="End" actions=""
 fail_actions="">
 <attribute name="Service" value="*service"/>
 <attribute name="Status" value="Started"/>
 <attribute name="ipAddr" value="*ipaddr"/>
 <attribute name="ipPort" value="*ipport"/>
 <attribute name="time" value="*time"/>
</state>
<state name="End" timebound="15000" children=""
 actions="Debug" fail_actions="Crash">
 <attribute name="Service" value="*service"/>
 <attribute name="State" value="FINISHED_STATE"/>
 <attribute name="ipAddr" value="*ipaddr"/>
 <attribute name="ipPort" value="*ipport"/>
 <attribute name="time" value="*time2"/>
</state>

Figure 6. Failure detection pattern.

In particular, the incoming probes reported Status and
State values that were closely watched to track method
completion. If for some reason a “FINISHED_STATE”
was not received within 15 seconds after a method had
initiated, the system would send out the “Crash” event;
otherwise, the “Debug” notification would be sent out.
(Both notifications can be seen in a larger example in the
Appendix.)

In this case, if the repair system received a “Crash”
event, the repair involved would be a simple restart of the
service. A more sophisticated repair could coordinate
multiple services to prevent having to restart the operation
that triggered the crash in the first place. Even in the first
case, however, we were able to automate a process that,
previously, had been done manually.

4.3 Load balancing/QoS

4.3.1 Load-balancing GeoWorlds. In addition to
developing failure detection for GeoWorlds, we
implemented a load-balancing solution, as a number of
different GeoWorlds execution scripts rely on
computationally-intensive backend services; crash
avoidance and performance maximization through request
relocation was clearly desirable. To accomplish this, we
utilized the relocatibility of Jini services to build a load-
balancing solution for GeoWorlds. First, a system
monitor probe was built in C# to measure the overall load
on the system, and results were piped into a custom
plugin for the Event Packager. Second, an ACME

architectural description of the GeoWorlds system was
created, which included specified load constraints on the
appropriate services. The rules were then dynamically
generated and fed into the Event Distiller based on the
pre

eStudio’s [27]
architectural diagram visualization tools.

sh

X’s utility and applicability in an industrial
co ext.

e performed
uring runtime without shutting down either the target

itoring infrastructure.

5.

ddress
rec

,
wh

r intent to
int

s are largely static,
de

defined architectural constraints.
During the execution of various services, if this load

would exceed a predetermined threshold (defined as a
constraint in an ACME architectural description of the
GeoWorlds system) for an extended period of time, the
Event Distiller would detect and report it as a violation of
the architectural constraints – and the triggered repair
would cause the service to move to a different Jini-
enabled host. Additional logic was programmed into the
Event Distiller rulebase to detect oscillation (thrashing)
and proactively prevent it. We were also able to visualize
the load and service state using Acm

4.3.2 TILAB IM System. TILAB [28] has developed
and deployed a J2EE-based multi-channel Instant
Messaging (IM) service, which is currently used daily by
thousands of end-users [8]. KX was validated in this
scenario for autonomically handling a variety of
monitoring, reconfiguration and repair requirements of
the service architecture. First, on-demand scalability is
supported: by probing user sign-on events and server
request queues, KX can determine the load of each
element in the IM server farm and take appropriate
actions whenever needed [8]. Repairs, selected on the
basis of the inferences carried out using Event Distiller
rules, encompass modifications to the threading model of
active servers or on-the-fly deployment and activation of
additional server instances and corresponding
reconfiguration of the commercial load-balancer (an IBM
product in this real-world configuration) to redirect client
traffic to these new servers. Failure detection is also
supported from a load-balancing standpoint: information
on server failures, as well as interconnections between
servers and the backend DBMS entities is similarly
captured to facilitate load balancer reconfiguration to
direct client traffic to still-functional servers. The same
set of probes and actuators, coupled with slightly different
Event Distiller gauge rules and Workflakes repairs, can
also be used to support controlled and graceful staging of
the service infrastructure; this enables automated software
release deployment without necessitating a complete

utdown (and service interruption) during the transition.
Overall, the TILAB case study demonstrated benefits

with respect to application-level QoS, as well as ease and
automation of service management. More generally, it
proves K

nt

Most of the above scenarios were implemented with
minimal manually-written glue code for attaching our
external autonomic infrastructure to the target system. In
the GeoWorlds case, we were able to utilize a pre-
existing tool for automatic instrumentation; if source was
not available, tools like OBJS’ Software Surveyor [29],
which is capable of runtime Java bytecode munging,
could be used instead. The KX overlay is extremely
lightweight, and by configuring application-specific rules,
we’ve been able to add a variety of system monitoring-
related functionality that was not originally embedded in
nor planned for the target system. If other monitoring is
desired, minor rule reconfiguration can b
d
system or the KX mon

 Related Work

Other projects in the DARPA DASADA program
more directly addressed the technical details of system
assembly, adaptation, and reconfiguration; one of our
main goals was to provide standardized infrastructure to
support their gauges and extend their repairs to real-time
processing, while the target system remained running
(without bringing it “down”). Garlan [30] discusses
static model checking, Geib [31] performs formal
verification, and Osterweil [32] and Wolf [33] a

onfiguration workflow. In contrast, our gauges are
more focused on dynamic application monitoring.

The Astrolabe project [34] uses a replicated DNS-like
infrastructure to support a number of applications,
including system monitoring semantics; although we also
consider Internet-scale applications, their approach may
be better suited to a more distributed monitoring model

ere many nodes need to know the information and it is
acceptable for latencies to be in the tens of seconds.

The NESTOR project [35] takes a network-layer
approach to monitoring. In the commercial arena, OC
Systems has an analogous platform to DASADA probes
and monitors with their AProbe [36] and RootCause [37]
products, while SMARTS offers their Automated
Business Assurance service with “Codebook Correlation
Technology.” [38] These technologies are generally
noninvasive and rely on quickly matching against static or
predetermined analysis, as compared to ou

egrate with application semantics, where new success
or failure rules can be introduced on the fly.

Fault management systems [39,40] are also closely-
integrated at the systems level, for telecommunications-
level reliability. These system

signed for vertical solutions, and not for complex
distributed “systems of systems”.

Intrusion detection systems [41,42] usually focus on
system- or network-level security, and are not generally

useful for application reliability or self-management. We
are actively investigating the migration of our work
towards intrusion detection to better support specific
application-level security semantics, in particular based
on

 at potentially lower
pe

asily be utilized by
KX

s desiderata for
mmercial Grid computing [49], but are not currently

6.

Our
exa

igation. Our ongoing work with CMU to integrate

architectural semantics into the framework should help.

 semantic models gleaned from machine learning
systems [43].

A number of academic and commercial generalized
event correlation systems exist, which correspond, to
some extent, to our Event Distiller gauges [44,45]. These
generally use a coding and compilation approach to
defining event patterns; in contrast, our dynamic-at-
runtime rules are better adapted to embedding solutions in
continuously running systems, albeit

rformance levels. We are in the process of
investigating these tradeoffs further.

Several probe and gauge technologies have been
integrated into the event propagation [46] and network
layers, often in hardware via SNMP [47]. These tend to
be optimized for lower-level, high-volume general-
purpose packet streams. They can e

, which can provide higher-level semantics to simple
matches found in these lower layers.

“Grid Computing” attempts to make distributed
computing resources visible as a single virtual computer.
One of the most extensively developed Grid computing
platforms is the Globus toolkit [48]. Grid computing is a
natural match for the automated distributed management
capabilities of our KX architecture. Features such as
system configuration management and autonomic
management have been listed a
co
part of the Grid computing standards.

 Conclusions and Future Work

We have discussed KX, an implementation of an
easily-integrable external monitoring infrastructure,
defined as a component-replaceable meta-architecture,
which can be used to add autonomic self-management
and self-healing functionality to legacy systems and
large-scale systems of systems. We have focused on the
Event Packager and Event Distiller, components, which
have not been explained in prior publications.

mples, for failure detection, load balancing, and email
processing, demonstrate the success of our solution.

We are investigating extensions of reported ongoing
research in several directions. In particular, making KX
internals more autonomic is a major goal – automatic
probe deployment, automatic gauge derivation, and
automated construction of repair plans are under
invest

7. Acknowledgements

We would like to thank the other members of the
Programming Systems Lab for their contributions to this
effort, as well as our outside colleagues who alternately
provided criticism and encouragement – Bob Balzer,
Dave Wile, David Garlan, Bradley Schmerl, David Wells,
Nathan Combs, George Heineman, Bob Neches, Lee
Osterweil and John Salasin. The Programming Systems
Laboratory is funded in part by Defense Advanced
Research Project Agency under DARPA Order K503
monitored by Air Force Research Laboratory F30602-00-
2-0611, by National Science Foundation grants CCR-
0203876, EIA-0071954, and CCR-9970790, and by
Microsoft Research and IBM. The software described
here can be downloaded for research and education
purposes from http://www.psl.cs.columbia.edu.

8. References

[1] IBM Research, Autonomic Computing,

http://www.research.ibm.com/autonomic.
[2] Microsoft, Windows XP/Office XP Feature Overview,

http://www.microsoft.com/windowsxp/pro/evaluation/ove
rviews/windowsxpofficexp.asp.

[3] Feder, Barnaby J. “On the Trailing Edge of the Arms
Industry, by Choice.” The New York Times, March 30,
2003.

[4] Raijlich, V., Wilde, N., Buckellew, M., and Page, H.
“Software cultures and evolution.” IEEE Computer, Vol.
34, Iss. 9, Sep. 2001, pp. 24-28.

[5] Bekker, S. “Microsoft Error Reporting Drives Bug
Efforts”, ENT News, October 3, 2002,
http://www.entmag.com/news/article.asp?EditorialsID=55
32.

[6] SANS, “What is Host-Based Intrusion Detection?”
Intrusion Detection FAQ,
http://www.sans.org/resources/idfaq/host_based.php.

[7] LANDesk Software, LANDesk Management Software,
http://www.landesksoftware.com/.

[8] Valetto, G. and Kaiser, G. “Using Process Technology to
Control and Coordinate Software Adaptation.”
International Conference on Software Engineering, May
2003, in press.

[9] Salasin, J. DARPA DASADA Program,
http://www.rl.af.mil/tech/programs/dasada/program-
overview.html.

[10] Carzaniga, A., Rosenblum, D.S. and Wolf, A.L. "Design
and Evaluation of a Wide-Area Event Notification
Service." ACM Transactions on Computer Systems,
19(3):332-383, Aug. 2001.

[11] Gross, P.N, Gupta, S., Kaiser, G.E., Kc, G.S., Parekh, J.J.
“An Active Events Model for System Monitoring.”
Working Conference on Complex and Dynamic Systems
Architectures, December 2001.

[12] BBN, Cougaar, http://www.cougaar.org/.

http://www.psl.cs.columbia.edu/
http://www.research.ibm.com/autonomic
http://www.microsoft.com/windowsxp/pro/evaluation/overviews/windowsxpofficexp.asp
http://www.microsoft.com/windowsxp/pro/evaluation/overviews/windowsxpofficexp.asp
http://www.entmag.com/news/article.asp?EditorialsID=5532
http://www.entmag.com/news/article.asp?EditorialsID=5532
http://www.sans.org/resources/idfaq/host_based.php
http://www.landesksoftware.com/
http://www.rl.af.mil/tech/programs/dasada/program-overview.html
http://www.rl.af.mil/tech/programs/dasada/program-overview.html
http://www.cougaar.org/

[13] Valetto, G., Kaiser, G.E. and Kc, G. “A Mobile Agent

Approach to Process-based Dynamic Adaptation of
Complex Software Systems.” Eighth European Workshop
on Software Process Technology, LNCS 2077, June 2001,
pp. 102-116.

[14] Kaiser, G., Stone, A. and Dossick, S. “A Mobile Agent
Approach to Lightweight Process Workflow.” Position
paper in International Process Technology Workshop,
September 1999.

[15] Programming Systems Lab, Download Page,
http://www.psl.cs.columbia.edu/download.

[16] Segall, B., Arnold, D., Boot, J., et. al. “Content-based
routing with Elvin4.” Proceedings of AUUG2K, June
2000.

[17] Perrochon, L. Using Context-Based Correlation in
Network Operations Management,
http://pavg.stanford.edu/cep/cidf.ps.gz.

[18] Garlan, D., Monroe, R., and Wile, D. “Acme: An
Architecture Description Interchange Language.”
Proceedings of CASCON '97, November 1997.

[19] CAUCE, About Spam,
http://www.cauce.org/about/problem.shtml.

[20] Sendmail Inc., Sendmail Mail Server,
http://www.sendmail.org/.

[21] Sendmail Inc., Sendmail Mail Filter API,
http://www.sendmail.com/partner/resources/development/
milter_api/.

[22] Programming Systems Lab, Event Distiller
Documentation,
http://www.psl.cs.columbia.edu/xues/EventDistiller.html.

[23] SpamAssasin, Spam Filter, http://www.spamassassin.org.
[24] ISI, GeoWorlds GIS System,

http://www.isi.edu/geoworlds/.
[25] Sun, Jini Technology, http://www.sun.com/software/jini/.
[26] Heineman, G., Calnan, P., Kurtz, B., et. al. Active

Interface Development Environment (AIDE).
http://www.cs.wpi.edu/~heineman/dasada/.

[27] ACME, AcmeStudio Development Environment,
http://www-
2.cs.cmu.edu/~acme/AcmeStudio/AcmeStudio.html.

[28] Telecom Italia (TILAB),
http://www.telecomitalialab.com/.

[29] OBJS, Software Surveyor,
http://www.objs.com/DASADA/.

[30] Garlan, D., Schmerl, B., and Cheng, J. “Using Gauges for
Architecture-Based Monitoring and Adaptation.” Working
Conference on Complex and Dynamic Systems
Architectures, December 2001.

[31] Honeywell, Honeywell DASADA Project,
http://www.htc.honeywell.com/projects/DASADA/.

[32] Cobleigh, J., Osterweil, L., Wise, A., and Lerner, B.
“Containment Units: A Hierarchically Composable
Architecture for Adaptive Systems.” Proceedings of the
10th International Symposium on the Foundations of
Software Engineering (FSE 10), pp. 159-165.

[33] Wolf, A., Heimbigner, D., Knight, J.C., Devanbu, P.T.,
Gertz, M., Carzaniga, A. “Bend, Don't Break: Using
Reconfiguration to Achieve Survivability.” Third

Information Survivability Workshop--ISW-2000, October
2000.

[34] van Renesse, R. and Binnan, K.P., "Astrolabe: A Robust
and Scalable Technology for Distributed System
Monitoring, Management, and Data Mining." ACM
TOCS, November 2001.

[35] Konstantinou, A.V., Yemini, Y., and Florissi, D.
“Towards Self-Configuring Networks.” DARPA Active
Networks Conference and Exposition (DANCE), May
2002.

[36] OC Systems, “Aprobe: A New Approach for Testing Web
Applications.”
http://www.ocsystems.com/aprobe_web_testing.html.

[37] OC Systems, “Improving Availability of Enterprise
Applications with RootCause.”
http://www.ocsystems.com/rootcause_white_paper.html.

[38] System Management ARTS, http://www.smarts.com.
[39] Sterritt, R., Shapcott, C.M., Adamson, K., and Curran,

E.P. "High Speed Network First-Stage Alarm Correlator."
International Conference Intelligent Systems And Control,
2000, pp 391-397.

[40] Steinder, M. and Sethi, A.S. “Probabilistic event-driven
fault diagnosis through incremental hypothesis updating.”
IFIP/IEEE Symposium on Integrated Network
Management, 2003.

[41] Internet Security Systems, RealSecure Network
Protection,
http://www.iss.net/products_services/enterprise_protectio
n/rsnetwork/.

[42] Cisco, Cisco Intrusion Detection System,
http://www.cisco.com/univercd/cc/td/doc/pcat/nerg.htm.

[43] Lee, W., Stolfo, S.J. and Chan, P.K. “Learning Patterns
from Unix Process Execution Traces for Intrusion
Detection”, Proc. AAAI-97 Work. on AI Methods in Fraud
and Risk Management, 1997.

[44] Luckham, D.C.; Vera, J. “An event-based architecture
definition language.” IEEE Transactions on Software
Engineering, Vol. 21, Iss. 9, Sep. 1995, pp. 717-734.

[45] Yemini, S.A., Kliger, S., et. al. “High speed and robust
event correlation.” IEEE Communications Magazine,
Vol. 34 Issue 5, May 1996, pp. 82-90.

[46] Zhao, Y. and Strom, R. “Exploiting Event Stream
Interpretation in Publish-Subscribe Systems.” Principles
of Distributed Computing, 2001.

[47] Rose, M., ed. RFC 1052: A Convention for Defining
Traps for use with the SNMP, 1991,
http://www.ietf.org/rfc/rfc1215.txt.

[48] Foster, I., Kesselman, C., et. al. “The Physiology of the
Grid: An Open Grid Services Architecture for Distributed
Systems Integration.” Open Grid Service Infrastructure
WG, Global Grid Forum, June 22, 2002.

[49] Kishimoto, H., Snelling, D. “OGSA Fundamental
Services: Requirements for Commercial GRID Systems.”
Global Grid Forum Draft, October 3, 2002.

http://www.psl.cs.columbia.edu/download
http://pavg.stanford.edu/cep/cidf.ps.gz
http://www.cauce.org/about/problem.shtml
http://www.sendmail.org/
http://www.sendmail.com/partner/resources/development/milter_api/
http://www.sendmail.com/partner/resources/development/milter_api/
http://www.psl.cs.columbia.edu/xues/EventDistiller.html
http://www.spamassassin.org/
http://www.isi.edu/geoworlds/
http://www.sun.com/software/jini/
http://www.rl.af.mil/tech/programs/dasada/tools/aide.html
http://www.rl.af.mil/tech/programs/dasada/tools/aide.html
http://www.cs.wpi.edu/~heineman/dasada/
http://www-2.cs.cmu.edu/~acme/AcmeStudio/AcmeStudio.html
http://www-2.cs.cmu.edu/~acme/AcmeStudio/AcmeStudio.html
http://www.telecomitalialab.com/
http://www.objs.com/DASADA/
http://www.htc.honeywell.com/projects/DASADA/
http://www.ocsystems.com/aprobe_web_testing.html
http://www.ocsystems.com/rootcause_white_paper.html
http://www.smarts.com/
http://www.iss.net/products_services/enterprise_protection/rsnetwork/
http://www.iss.net/products_services/enterprise_protection/rsnetwork/
http://www.cisco.com/univercd/cc/td/doc/pcat/nerg.htm
http://www.ietf.org/rfc/rfc1215.txt?number=1215

A1. Event Packager and Event Distiller
ruleset examples

A1.2. Event Distiller Rulebase

We provide here an extended view of the rules

presented in Figure 6, including the corresponding
notifications if the pattern is matched.

While example ED rule snippets were provided in the

body of the paper, we give more comprehensive rulesets
here and describe their behavior.

A1.1. Event Packager Rulebase

We give an example here of a configuration that
subscribes to one Siena event bus for events which have
the attribute-value pair (“TestAttribute”, “TestValue”),
stores the results in a SQL database, and finally copies the
results to another Siena event bus.

The references to the Console are needed if console-

level control is desired of the Event Packager; it perceives
the user console to be yet another source (and, potentially,
a sink) for events.

<rulebase xmlns="http://www.psl.cs.columbia.edu/2001/01/DistillerRule.xsd">

<rule name="ActiveEvent">
 <states>
 <state name="Start" timebound="-1" children="End" actions=""
 fail_actions="">
 <attribute name="Service" value="*service"/>
 <attribute name="Status" value="Started"/>
 <attribute name="ipAddr" value="*ipaddr"/>
 <attribute name="ipPort" value="*ipport"/>
 <attribute name="time" value="*time"/>
 </state>
 <state name="End" timebound="15000" children="" actions="Debug"
 fail_actions="Crash">
 <attribute name="Service" value="*service"/>
 <attribute name="State" value="FINISHED_STATE"/>
 <attribute name="ipAddr" value="*ipaddr"/>
 <attribute name="ipPort" value="*ipport"/>
 <attribute name="time" value="*time2"/>
 </state>
 </states>
 <actions>
 <notification name="Crash">
 <attribute name="Notification_Type" value="GW_Alarm"/>
 <attribute name="Message" value="Dead_Service"/>
 <attribute name="KX_Reaction_Type" value="Workflow"/>
 <attribute name="KX_Reaction_Spec" value="Disable_Service"/>
 <attribute name="Timestamp" value="*time"/>
 <attribute name="Service" value="*service"/>
 <attribute name="Name" value="gwHostAdapter"/>
 <attribute name="IPaddress" value="*ipaddr"/>
 <attribute name="port" value="*ipport"/>
 <attribute name="serviceURI" value="http://www.isi.edu/..."/>
 <attribute name="schemaURI" value="http://www.isi.edu/..."/>
 </notification>
 <notification name="Debug">
 <attribute name="GWFinish" value="Yes"/>
 <attribute name="Timestamp" value="*time2"/>
 </notification>
 </actions>
</rule>

</rulebase>

<EventPackagerConfiguration>
 <Inputters>
 <Inputter Name="SienaInput1" Type="psl.xues.ep.input.SienaInput"

SienaReceivePort="7890">
 <SienaFilter Name="TestFilter1">
 <SienaConstraint AttributeName="TestAttribute" Op="="

ValueType="String" Value="TestValue" />
 </SienaFilter>
 </Inputter>
 <Inputter Name="ConsoleInput1"

Type="psl.xues.ep.input.ConsoleInput" />
 </Inputters>
 <Outputters>
 <Outputter Name="SienaOutput1"

Type="psl.xues.ep.output.SienaOutput"
SienaReceivePort="7891" />

 <Outputter Name="NullOutput1" Type="psl.xues.ep.output.NullOutput" />
 </Outputters>
 <Transforms>
 <Transform Name="Store1" Type="psl.xues.ep.transform.StoreTransform"

 StoreName="HSQLDB1" />
 </Transforms>
 <Stores>
 <Store Name="HSQLDB1" Type="psl.xues.ep.store.JDBCStore"

DBType="hsqldb" DBDriver="org.hsqldb.jdbcDriver"
DBName="xues" DBTable="xues" Username="sa"
Password="" />

 </Stores>
 <Rules>
 <Rule Name="TestRule1">
 <Inputs><Input Name="SienaInput1" /></Inputs>
 <Transforms><Transform Name="Store1" /></Transforms>
 <Outputs><Output Name="SienaOutput1" /></Outputs>
 </Rule>
 <Rule Name="ConsoleRule">
 <Inputs><Input Name="ConsoleInput1" /></Inputs>
 <Outputs><Output Name="NullOutput1" /></Outputs>
 </Rule>
 </Rules>
</EventPackagerConfiguration>

In this case, we allocated 15 seconds for the method to
complete, and in the Crash case, both static and dynamic
(i.e., wildcard-bound) data were reported (certain URLs
were commented out to keep the length to a minimum).

Details on individual keywords in either rulebase can

be found on the PSL website (see
http://www.psl.cs.columbia.edu/xues).

http://www.psl.cs.columbia.edu/xues

